Burnt and broken: An experimental study of heat fracturing

in silcrete

Alison Mercieca

Heat-induced fracturing of archaeological stone is a
worldwide phenomenon, yet it is poorly understood. Not only
does confusion surround the common perception of heat
fracturing, where it is often confused with heat-treating, but our
knowledge of the specific processes responsible for heat
fracturing has been retarded by a lack of explicit and controlled
experimental investigation. Apart from two North American
experimental studies (Purdy 1974, 1975; Patterson 1995), no
published and/or widely available experimental data on heat
fracturing of archaeological stone material exists.

In the absence of a sound experimental basis,
unsubstantiated and untested explanations have been invoked to
account for the archaeological presence of heat fractured stone.
The research described in this paper sets out to clarify the
distinction between heat-treating and heat fracturing before
providing some experimental evidence of the conditions in
which heat fracturing occurs. This evidence is subsequently
used to develop taphonomic principles of heat-induced
fracturing. These principles can be used when developing
archaeological explanations for sites featuring stone material
displaying heat-induced fracturing. The paper concludes with
examples that highlight the significance such research has for
archaeologists.

Heat fracturing: Its definition and archaeologicdl scope

It is necessary to begin with an acknowledgement that heat
fracturing is not necessarily associated with the practice of heat-
treating. It is therefore inappropriate to use the two terms
interchangeably; the two concepts are not one and the same, nor
are they necessarily connected. For this reason it is important
to first define each concept in order to avoid any confusion.
This will also serve to establish the intended meaning of both
terms for this paper.

Heat-treating occurs when stone material is heated in a
controlled manner, prior to or during various stages of the
knapping process, to produce a material that is comparatively
homogeneous to its unheated counterpart. A practice known to
have been globally employed by prehistoric flintknappers
(Hester 1972; Collins and Fenwick 1974; Flenniken and
Garrison 1975), including in Australia (Akerman 1979;
Flenniken and White 1983; Hanckel 1985; Domanski and Webb
1992; Rowney and White 1997), heat-treating requires specific
temperatures and timing, with experiments having
demonstrated that exceeding these critical conditions (for
example too high a temperature, or heating or cooling too
rapidly) often results in fractures (Purdy and Brooks 1971:323;
Purdy 1974:40; Purdy 1975:137; Patterson 1995:73). When
successful however, the result is an increased ease in flaking of
the stone material (Crabtree and Butler 1964:1; Purdy and
Brooks 1971:325;, Domanski et al/ 1994:178). Furthermore
most archaeologists use the term heat-treating to imply intent.
Incidentally, although a deliberate act, quarrying with fire is not
included in this definition of heat-treating by most
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archaeologists because it is not specifically intended to alter the
flaking properties of the stone in order to improve flakability
(Gregg and Grybrush 1976:189; Akerman 1979:144). Fire-
cracked rock and boiling stones are thus also excluded for the
same reasons.

On the other hand the term heat fracturing indicates that a
piece of stone has suffered physical stress (in the form of such
fractures as crenation, potlidding, and surface crazing)
produced through heat. This heat stress occurs as cracking
and/or shattering of the stone, where cracking implies that
although physically damaged, the stone remains in one piece,
whereas shattering results in two or more pieces. Heat
fracturing effects artefactual as well as non-artefactual stone
material as there is no assumption that fracturing resulted
through intended acts.

At present two explanations are usually offered by
archaeologists for the presence of heat fractured stone in
archaeological contexts. The first explanation perceives of heat
fractures as the result of failed attempts to heat treat (Purdy and
Brooks 1971; Collins and Fenwick 1974:136; Purdy 1975:133;
Olausson and Larsson 1982:278). These fractures, although
associated with attempts to heat treat, are still a separate
component of that practice itself, simply representing one
possible outcome. Ifthe evidence suggests that this does appear
to be the case, and the fractures are interpreted as the results of
failed heat-treating attempts, then the heat fractured rock could
possibly indicate the presence and location of a heat-treating pit
at a site (McDonald and Rich 1994).

However, heat fracturing is not necessarily associated with
heat-treating. An alternative explanation sometimes offered by
archaeologists considers heat fracture initiation as resulting
from proximity to other heat sources (Hiscock 1985; Hiscock
and Hall 1988a:65; Hiscock 1993:67; Rondeau 1995:135-136).
For example if artefacts happen to come into contact with a
hearth employed for heat, light, and/or cooking upon or after
deposition, any resulting heat fracturing would not be related to
attempts at heat-treating. Heat fractured stone found at a site
under these circumstances then may indicate the presence and
location of a hearth, or hearth based activities at a site (Hassan
1987:4; Hall and Hiscock 1988:59; Hiscock 1993:67).
Consideration should also be given to non-cultural heat sources
such as bushfires as being the agent in heat fracturing
archaeological stone.

Both explanations above essentially involve taphonomic
processes where stone material is altered when heat is applied
by a fire. So while both explanations for the heat-induced
fracturing of archaeological stone are plausible, they are
potentially weakened by a lack of principles developed through,
and supported by, substantive experimental evidence. As
pointed out by Tringham (1978:176) “Archaeologists tend to
avoid doing the basic analysis and testing of the properties of
archaeological materials themselves.” Initially then, research
should focus on acquiring knowledge of the processes
responsible for transforming archaeological stone through heat-
induced fracturing. The aim is to develop, from experimental
observation, a sound body of taphonomic principles designed to
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help archaeologists interpret heat-induced fractured stone in the
archaeological record. In doing so. such principles contribute to
the overall theory of archaeological formation processes. Once
we understand how stone responds to heat stress. we can then
start to build inferences of site function and human behaviour.

Experimental program

The remainder of this paper presents research in which |
considered how silcrete could be physically transformed
through heat-induced fractures (Mercieca 1999). My overall
goal was to investigate some of the cause-and-effect
relationships behind the heat fracturing of stone material. with
the purpose of developing some basic principles useful for
archaeological interpretations. This | did through a series of
laboratory experiments. Some of the results of these
experiments are reported on in this paper, together with a brief
consideration of their archaeological implications.

Experimental aims

The experiments outlined in this paper set about addressing
the following questions:

« What are the heating conditions under which heat

fracturing in stone is initiated?

s Does changing size of the specimens, while keeping all
other known variables constant, affect these conditions?

s Does increased moisture content in specimens of the same
size and shape affect these conditions?

s Is there a significant relationship between the number of
fractures and the temperature to which specimens
possessing the same attributes are exposed?

The experiments were also designed to either support or
reject the following hypotheses, which were devised after
reviewing the experimental data available in the literature. All
hypotheses assume that all known extraneous variables are held
constant:

+ Sudden and cxtreme changes in temperature will cause

stone material to fracture

+ Increasing the size of the stone specimens will decrease
the temperature required to initiate fracturing

+ Increasing moisture content of the stone specimens will
decrease the temperature required to initiate fracturing.

s The number of fractures created on specimens with the
same attributes will increase as the temperature to which
they are exposed increases.

Equipment and materials
These concerns were approached through a series of
laboratory experiments at the Australian
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cubes of various set sizes (20x20x10mm: 20x20x20mm:
40x40x20mm) using water-cooled diamond blade saws in the
Geology Department at the ANU. Cutting the specimens using
the saws provided a straightforward and convenient way of
controlling and systematically altering the size and or shape of
specimens so that the effects of manipulating such attributes
could be observed.

The choice of size was based on three main factors:

1. Examples of the sizes of silcrete artefacts in archaeological
context from around Australia were drawn from the literature
(Byrne 1980; Hiscock 1982).

Specific examples include Hiscock and Hall (1988a: 78)
who provide the following range of dimensions for
unretouched silcrete flakes >5Smm recovered from Platypus
Rockshelter in southeast Queensland: Length = 7-46mm;
Width = 10-31mm: Thickness = 2-9mm. Another example
comes from Sandy Hollow Rockshelter in the Hunter Valley.
These measurements come from artefacts located in Spit 2 of
that site (Hiscock 1986:43): Length = 4-58mm; Width =
1-42mm.

2. The availability of raw material for producing experimental
specimens: the choice of specimen size was partially dictated
by the size of the available silcrete cobbles.

3. Restrictions imposed upon the cutting process by the saws
used, where cutting anything thinner then 10mm caused the
rock to slip, proving hazardous to the blade, and endangering
my fingers.

There are two main groups of variables that play a part in
creating heat fractures in stone. These will be called *specimen
variables’” and ‘environmental variables’. Specimen variables
are attributes pertaining to the specimen itself, such as raw
material, size, shape, and moisture content. Environmental
variables are those external to the specimen, such as timing (rate
of heating and cooling; time at maximum temperature) and
temperature (starting. maximum, finishing) of exposure.
Previous heat fracturing experiments (Purdy 1975; Patterson
1995) have focused on manipulating the variables within the
latter group. as have the majority of heat-treating experiments
from which we get a scattering of additional information on
heat fracturing (e.g. Crabtree and Butler 1964; Price et al 1982;
Ahler 1983; Joyce 1985; Griffith er a/ 1987). In focusing on the
effects of environmental variables on the heating of stone, these
experiments have largely neglected to either control for or
isolate and test for variation within the specimens themselves.
This potentially weakens any principles developed. particularly
if limited control is kept over known extraneous specimen
variables (whilst testing for the effects of altering timing and

National University using the School of
Archaeology and Anthropology’s Nabar
electrical furnace. Use of the furnace was
considered the most effective way of

controlling heating conditions, giving

efficiency to a programme running on

Wood type Maximum Time (min) Reference
Temp C to reach
max temp
Juniperus sp. 962 25 Shepard (1968)
Carpenter’s scrap 805 210 Mandeville (1973} |

limited time and resources. Knowledge of
the nature of wood fires gained through

Various deciduous

540csull dayy 7 Gniffith er al (1987)

field ; . h h list, species 700 (windv)
I¢1C experiments, such as the Tealisic — [Fp s 840 5 David (1990)
range of potential maximum temperatures, :
. . . macrorhyncha

was incorporated into the experimental JE o
design in order to ensure the results had and L. ”.)“” _
archaeological  relevance. This Cuausuarina 860-870 N Robins und Stock
information is listed in Table 1. litoralis (1990)

The experimental specimens were  Table 1 Maximum temperatures obtained and the time taken to reach maximum

prepared into rectangular prisms and
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temperature). Because of this imbalance, I set out to control for
and also test the influence of some specimen attributes on the
heat-induced fracturing of stone. The experimental programme,
with its results, is summarised in Table 2.

All specimens used in the experiments were cut from a
single silcrete cobble collected from Bannister’s Point on the
New South Wales south coast. In this way possible variation
within a single petrological class was controlled for.
Furthermore each specimen was only used for a single heating
event so that any reaction could be attributed to the testing
variable, and not to the fact that the specimen may have been
weakened by multiple heating events. Finally all specimens

were placed into the furnace without any insulation to simulate
some aspects of direct exposure of the stone to fire.

Methods and results

Testing variables within the heating conditions

Initial experimentation focused on the heating conditions
necessary to initiate fracturing. This involved the sudden
heating and cooling of specimens (20x20x10mm). In the
former case, the specimens were taken from room temperature
and placed into a furnace preheated to temperatures ranging
from 635-995°C. The specimens were then left at this

Set No.of  Test Size (mm)* Constants Test variable Result
Species (within set) (within set)

1 18 Effects of suddenly 20x20x10 Size; shape; pre-test Maximum temp/ Fracturing
exposing a dry treatment (dry); starting temp
specimen to time at max temp;,
preheated furnace cool down time;

finish temperature

2 14 Effects of suddenly  20x20x10 Size; shape; pre test Maximum temp./ Fracturing
exposing a soaked treatment (soaked); starting temp.
specimen to preheated time at max temp.;
furnace (increased cool down time;
moisture content) finish temp.

3 7 Effects of suddenly 20x20x20 Size; shape; pre-test Maximum temp./ Fracturing
exposing a dry treatment (dry); starting temp.
specimen to preheated time at max temp.;
furnace (increased cool down time;
size and shape) finish temp.

4 4 Effects of suddenly 40x40x20 Size; shape; pre-test Maximum temp./ Fracturing
exposing a dry treatment (dry); starting temp.
specimen to a time at max temp.;
preheated furnace cool down time;

(increased size) finish temp.

5 15 Effects of suddenly 20x20x10 Size; shape; Maximum temp./ No physical
removing specimen starting temp. finishing temp.; damage
from furnace at max rate of heating
temp to room temp

6 3 Effects of suddenly 20x20x10 Size; shape; Maximum temp/ No physical
removing specimen starting temperature finish temp; damage
from furnace at max rate of heating
temp and immersing
in water

7 1 Effects of exposing 20x20x10 n/a# n/a# No physical
specimen to extended damage
periods of heating

8 1 Effects of removing  20x20x10 n/at n/a# No physical
spec from furnace at damage
max temp and then
dripping water onto
its surface

*Size was varied between sets, not within, where it was held constant.

# no constants and variables because only one heating event was performed in the set.

Table 2
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Summary of experimental program and results obtained.
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numerous known yet unexplored variables that could play a
role in the heat fracturing of stone, including raw material type,
changes in shape, both regular and irregular, effects of using
insulation, and so on. Research addressing some of these
unexplored areas is currently underway.

Heat induced fracturing of stone is a process acting to
transform the morphology of stone, including artefacts. It is in
our best interests to research and attempt to understand the heat
fracturing of stone and the mechanisms responsible. Building
principles can only be of benefit to archaeologists who can
then more confidently use evidence of heat fractured stone to
develop inferences for explaining past human life.
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